Safety directional valves with spool position monitoring

On-off, pilot operated, conforming to Machine Directive 2006/42/EC - certified by

Pilot operated safety directional valves with main spool position monitoring, CE marked and certified by TUV in accordance with safety requirements of Machine Directive 2006/42/EC.
Two models are available depending to the pilot valve execution:
DPHI for AC and DC supply, solenoid pilot valve (5) type DHI, with cURus certified solenoids, see tech. table E010
DPHE high performances, for AC and DC supply, solenoid pilot valve (5) type DHE with cURus certified solenoids, see tech. table E015
The valves are equipped with FV inductive position switch for the main spool position monitoring, see section 9 for sensor's technical characteristics.

Certification

The TÜV certificate can be downloaded from www.atos.com, catalog on line, technical information section
Mounting surface: ISO 4401, size 10, 16, 25 Max flow: 160, 300, 700 I/min Max pressure: $\mathbf{3 5 0}$ bar

```
MODEL CODE
```


Valve configuration, see section 2,

$61=$ single solenoid, center plus external position, spring centered
63 $=$ single solenoid, 2 external positions, spring offset
$67=$ single solenoid, center plus external position, spring offset
71 = double solenoid, 3 positions, spring centered
$75=$ double solenoid, 2 external positions, with detent

X 24DC

Series number

Voltage code, see section 7
$\mathbf{X}=$ without connector, see section 8 for available connectors, to be ordered separately

Spool position monitor

FV = inductive position switch (double contact)

Hydraulic options, see section 5
A, D, E, R
Optional devices for main spool switching control, see section 6 H, H9, L9

Spool type, see section 2

Notes

FV = inductive position switch providing both NO and NC contacts to be wired on the electric connector
The FV inductive position switch is directly connected to the valve main spool
In pilot operated valves only the main spool position is monitored; the pilot solenoid valve is not monitored

2.1 Standard spools availability

- DPH*-1 are available only with spools $\mathbf{0 , 0 / 2 , 1 , 1 / 2 , 3 , 4 , 5 , 5 8 , 6 , 7}$
- DPH*${ }^{\star}-2$ and $\mathrm{DPH}^{\star}-4$ are available with all spools shown in the above table

2.2 Special shaped spools

- spools type $\mathbf{0}$ and $\mathbf{3}$ are also available as $\mathbf{0 / 1}$ and $\mathbf{3 / 1}$ with restricted oil passages in central position, from user ports to tank.
- spools type $\mathbf{1 , 4 , 5 , 5 8 , 6}$ and $\mathbf{7}$ are also available as $\mathbf{1 / 1 , 4 / 8 , 5 / 1 , 5 8 / 1 , 6 / 1}$ and $\mathbf{7 / 1}$ that are properly shaped to reduce water-hammer shocks during the switching.

2.3 Special spool availability

Valve size	special shaped spool							
		$0 / 1$	$3 / 1$	$1 / 1$	$4 / 8$	$5 / 1$	$58 / 1$	$6 / 1$
$\mathrm{DPH}^{*}-1$	\bullet	\bullet		\bullet				
$\mathrm{DPH}^{*}-2, \mathrm{DPH}^{*}-4$	\bullet							

3 MAIN CHARACTERISTICS

Assembly position / location	Any position
Subplate surface finishing	Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)
MTTFd values according to EN ISO 13849	75 years, for further details see technical table P007
Ambient temperature	$\begin{aligned} & \text { Standard }=-30^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C} \\ & \text { /PE option }=-20^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C} \end{aligned}$
Flow direction	As shown in the symbols of table 2]
Operating pressure	P, A, B, X = $\mathbf{3 5 0}$ bar (for pilot pressure see also option /L9 at section 6) $\mathrm{T}=\mathbf{2 5 0}$ bar for external drain (standard) T with internal drain (option /D) = $\mathbf{1 2 0}$ bar DPHI; 210 bar DPHE (DC); $\mathbf{1 6 0}$ bar DPHE (AC) $\mathrm{Y}=0$ bar Minimum pilot pressure for correct operation is $\mathbf{8}$ bar
Maximum flow	$\mathrm{DPH}^{*}-1: 160 \mathrm{I} / \mathrm{min} ; \mathrm{DPH}^{*}-2: \mathbf{3 0 0} \mathrm{I} / \mathrm{min} ; \mathrm{DPH}^{*}-4: \mathbf{7 0 0} \mathrm{I} / \mathrm{min}$ (see $Q / \Delta p$ diagrams at section 12 and operating limits at section 13)

3.1 Coils characteristics

Insulation class	H $\left(180^{\circ} \mathrm{C}\right)$ for DC coils (all versions) and AC coils (only DPHI) $\mathbf{F}\left(155^{\circ} \mathrm{C}\right)$ for AC coils (only DPHE) Due to the occuring surface temperatures of the solenoid coils, the European standards EN ISO 13732-1 and EN ISO 4413 must be taken into account
Protection degree to DIN EN 60529	IP 65 (with connectors correctly assembled)
Relative duty factor	100%
Supply voltage and frequency	See electric features 7
Supply voltage tolerance	$\pm 10 \%$
Certification	cURus North American standard

Seals, recommended fluid temperature	NBR seals (standard) $=-20^{\circ} \mathrm{C} \div+60^{\circ} \mathrm{C}$, with HFC hydraulic fluids $=-20^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$ FKM seals (/PE option) $=-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$		
Recommended viscosity	$15 \div 100 \mathrm{~mm}^{2} / \mathrm{s}$ - max allowed range $2,8 \div 500 \mathrm{~mm}^{2} / \mathrm{s}$		
Fluid contamination class	ISO 4406 class 21/19/16 NAS 1638 class 10, in line filters of $25 \mu \mathrm{~m}$ ($\beta 25 \geq 75$ recommended)		
Hydraulic fluid	Suitable seals type	Classification	Ref. Standard
Mineral oils	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524
Flame resistant without water	FKM	HFDU, HFDR	ISO 12922
Flame resistant with water	NBR	HFC	

5 HYDRAULIC OPTIONS

5.1 option $/ \mathbf{A}=$ Solenoid mounted at side of port A of main body (only for single solenoid valves) In standard version the solenoid is mounted at side of port B
For sensor position, see sect 16
5.2 option /D = Internal drain (standard configuration is external drain)
5.3 option $/ \mathbf{E}=$ External pilot pressure (standard configuration is internal pilot pressure)
5.4 option $/ \mathbf{R}=$ Pilot pressure generator (4 bar on port P - not for DPH*-1)

The device /R generates an additional pressure drop, in order to ensure the minimum pilot pressure, for correct operation of the valves with internal pilot and fitted with spools type $\mathbf{0}, \mathbf{0} / \mathbf{1}, 4,4 / 8,5,58,09,90,94,49$.
The device / \mathbf{R} has to be fitted when the pressure drop in the valve, verified on flow versus pressure diagrams, is lower than the minimum pilot pressure value.

Pressure drop through the pilot pressure generator /R

(1) Flapper-guide
(3) Spring stop-washer
(2) Flapper
(4) Spring

Ordering code of spare pilot pressure generator

WARNING: the manual operation is not permitted for safety valves, than the valve is provided with solenoid blind rings to prevent the access to the manual override. The manual override protected by rubber cup (option MP) is not available

WARNING: the inobservance of following prescriptions invalidates the certification and may represent a risk for personnel injury Safety valves must be installed and commissioned only by qualified personnel Safety valves must not be disassembled
The inductive position switch FV can be adjusted only by the valve's manufacturer or Atos authorized service centers Valve's components cannot be interchanged
The valves must operate without switching shocks and spool vibrations

6 DEVICES FOR MAIN SPOOL SWITCHING CONTROL
Following options are suggested to reduce the hydraulic shocks at the valve operation
6.1 option / $\mathrm{H}=$ Adjustable chokes (meter-out to the pilot chambers of the main valve)
6.2 option /H9 = Adjustable chokes (meter-in to the pilot chambers of the main valve)
6.3 option /L9 = Only for DP-2 and DP-4: plug with calibrated restictor in P port of pilot valve, suggested in case of pilot pressure higher than 210 bar or to limit the hydraulics shocks caused by the fast main spool switching
Plug code:
PLUG-12A ø1,2 mm for DP-2
PLUG-15A ø1,5 mm for DP-4
option /H, /H9

FUNCTIONAL SCHEME (config. 71) example of switching control options

Valve	External supply nominal voltage $\pm 10 \%$	Voltage code	Type of connector	Power consumption (3)		Code of spare coil		
						DPHI	Colour of coil label DPHI	DPHE
DPHI DPHE	6 DC	6 DC (4)	$\begin{gathered} 666 \\ \text { or } \\ 667 \end{gathered}$	33 W	30 W	COU-6DC	brown	-
	12 DC	12 DC				COU-12DC	green	COE-12DC
	14 DC	14 DC				COU-14DC	brown	COE-14DC
	24 DC	24 DC				COU-24DC	red	COE-24DC
	28 DC	28 DC				COU-28DC	silver	COE-28DC
	48 DC	48 DC				COU-48DC	silver	COE-48DC
	110 DC	110 DC				COU-110DC	gold	COE-110DC
	125 DC	125 DC				COU-125DC	blue	COE-125DC
	220 DC	220 DC				COU-220DC	black	COE-220DC
	24/50 AC	24/50/60 AC (4)		60 VA	-	COI-24/50/60AC (1)	pink	-
	24/60 AC							
	48/50 AC	48/50/60 AC (4)				COI-48/50/60AC (1)	white	-
	48/60 AC							
	110/50 AC	110/50/60 AC			58 VA	COI-110/50/60AC (1)	yellow	COE-110/50/60AC
	115/60 AC (5)	115/60 AC		-	80 VA	-		COE-115/60AC
	120/60 AC (4)	120/60 AC		60 VA	-	COI-120/60AC	white	-
	230/50 AC	230/50/60 AC			58 VA	COI-230/50/60AC (1)	light blue	COE-230/50/60AC
	230/60 AC	230/60 AC			80 VA	COI-230/60AC	silver	COE-230/60AC
	110/50 AC	110RC	669	33 W	30 W	COU-110RC	gold	COE-110RC
	120/60 AC							
	230/50 AC	230RC				COU-230RC	blue	COE-230RC
	230/60 AC							

(1) Coil can be supplied also with 60 Hz of voltage frequency: in this case the performances are reduced by $10 \div 15 \%$ and the power consumption is 55 VA (DPHI) and 58 VA (DPHE)
(2) Average values based on tests performed at nominal hydraulic condition and ambient/coil temperature of $20^{\circ} \mathrm{C}$.
(3) When solenoid is energized, the inrush current is approx 3 times the holding current. Inrush current values correspond to a power consumption of about 150 VA .
(4) Only for DPHI
(5) Only for DPHE

COILS ELECTRIC CONNECTORS according to din 43650 (to be ordered separately)

9 TECHNICAL CHARACTERISTICS OF FV INDUCTIVE POSITION SWITCH

Type of switch	contactless inductive position switch with integrated amplifier	- 1 supply + 24 VDC
Supply voltage [V]	$20 \div 32$	\square
Ripple max [\%]	≤ 10	-1
Max current [mA]	400	4 output signal
Reaction time [ms]	15	2 output signal
Max peak pressure [bar]	400	\square
Mechanical life	virtually infinite	$\square 3 \mathrm{GND}$
Switch logic	PNP	

10 CONNECTING SCHEME OF FV INDUCTIVE POSITION SWITCH

single solenoid	double solenoid
Connector type ZBE-06 (supplied with the valve) 1 = supply +24 VDC 2 = output signal NC 3 = GND 4 = output signal NO	Connector type ZBE-06 (supplied with the valve) 1 = supply +24 VDC 2 = output signal sol. \mathbf{b} 3 = GND 4 = output signal sol. \mathbf{a}

Note: the /FV position switch is not provided with a protective earth connection

11 STATUS OF OUTPUT SIGNAL

DPHI - DPHE	Configuration 61 monitored position "0"	Configuration 63 monitored position "2"	Configuration 67 monitored position "2"	Configuration 71 monitored position "0"	Configuration 75 monitored position "2"
Hydraulic configuration					
spool position	10	1 2	0 0	100	1 1 2
	V	4	4		
	4	4			
$\begin{array}{\|ccc\|} \hline \sigma & & \text { ON } \\ \frac{0}{0} & \text { pin } 2 & \\ \hline \frac{\omega}{\omega} & \text { OFF } \end{array}$					4
$\begin{array}{\|lc\|} \hline 0 & \\ 0 & \text { ON } \\ \underset{U}{0} & \operatorname{pin} 4 \\ 0 & \text { OFF } \end{array}$				t	1
				5	t
$\begin{array}{\|lll\|} \hline \stackrel{\rightharpoonup}{0} & & \text { ON } \\ \stackrel{0}{\omega} & \text { pin } 4 & \\ \text { OFF } \end{array}$					4

Note:
FV position switch can be electrically wired by the customer as NO or NC and then the status of the output signal will be in accordance to the selected configuration
= intermediate spool position corresponding to the hydraulic configuration change

12 Q/Ap DIAGRAMS based on mineral oil ISO VG 46 at $50^{\circ} \mathrm{C}$

13 OPERATING LIMITS based on mineral oil ISO VG 46 at $50^{\circ} \mathrm{C}$
For a correct valve operation do not exceed the max recommended flow rates ($1 / \mathrm{min}$) shown in the below tables

DPH*-1

Spool	Inlet pressure $[\mathrm{bar}]$			
	$\mathbf{7 0}$	$\mathbf{1 6 0}$	$\mathbf{2 1 0}$	$\mathbf{3 5 0}$
	Flow rate $[1 / \mathrm{min}]$			
$0,1,3,6,7$	160	160	160	145
$4,4 / 8$	160	160	135	100
5,58	160	160	145	110
$0 / 1,0 / 2,1 / 2$	160	160	145	135

DPH* ${ }^{\star}$ -

Spool	Inlet pressure [bar]			
	$\mathbf{7 0}$	$\mathbf{1 4 0}$	$\mathbf{2 1 0}$	$\mathbf{3 5 0}$
	Flow rate $[1 / \mathrm{min}]$			
$0,1,3,6,7,8$	300	300	300	300
$2,4,4 / 8$	300	300	240	140
5	260	220	180	100
$0 / 1,0 / 2,1 / 2$	300	250	210	180
$16,17,56,{ }^{*} 9,9^{*}$	300	300	270	200

DPH*-4

Spool	Inlet pressure [bar]			
	$\mathbf{7 0}$	$\mathbf{1 4 0}$	$\mathbf{2 1 0}$	$\mathbf{3 5 0}$
	Flow rate [1/min]			
$1,6,7,8$	700	700	700	600
$2,4,4 / 8$	500	500	450	400
$5,0 / 1,0 / 2,1 / 2$	600	520	400	300
0,3	700	700	600	540
$16,17,58,{ }^{*} 9,9^{*}$	500	500	500	450

TEST CONDITIONS:

- Nominal voltage supply DC (direct) and AC (alternating) with connector type SP-666. The use of other connectors can affect the switching time;
- 2 bar of counter pressure on port T;
- mineral oil: ISO VG 46 at $50^{\circ} \mathrm{C}$

Piloting pressure		70 bar		140 bar		250 bar	
Valve model		Alternating current	Direct current	Alternating current	Direct current	Alternating current	Direct current
DPH*-1	Switch ON	$35 \div 50$	$50 \div 75$	$30 \div 40$	$45 \div 65$	$20 \div 30$	$35 \div 50$
	Switch OFF	$50 \div 80$					
DPH*-2	Switch ON	$40 \div 55$	$55 \div 80$	$30 \div 45$	$50 \div 70$	$20 \div 35$	$40 \div 55$
	Switch OFF	$60 \div 95$					
DPH*-4	Switch ON	$60 \div 95$	$80 \div 115$	$45 \div 75$	$60 \div 95$	$30 \div 50$	$45 \div 65$
	Switch OFF	$80 \div 130$					

15 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below.
To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270.
Standard valves configuration provides internal pilot and external drain

DPH*-1/FV

ISO 4401: 2005

Mounting surface:
4401-05-05-0-05
Fastening bolts:
4 socket head screws M6x40 class 12.9
Tightening torque $=15 \mathrm{Nm}$
Seals: 5 OR 2050, 2 OR 108
Ports P,A,B,T: $\varnothing=11 \mathrm{~mm}$ (max)
Ports $X, Y: \varnothing=5 \mathrm{~mm}$

Mass (Kg)		
DPHI-16	7,1	
DPHI-17	7,7	
DPHE-16	7,2	
DPHE-17	7,9	
Option H, H9	$+1,0$	

$\mathbf{P} \quad=$ PRESSURE PORT
= USE PORT
$\mathbf{T}=$ TANK PORT
= EXTERNAL OIL PILOT PORT
= DRAIN PORT

DPH*-171*
DPH**-175*

DPH*-161*
DPH*-161*/A

DPH*-163*/A DPH*-167*/A

DPH*-2*/FV

ISO 4401: 2005

Mounting surface: 4401-07-07-0-05

4 socket head screws M10x50 class 12.9
Tightening torque $=70 \mathrm{Nm}$
2 socket head screws M6x45 class 12.9
Tightening torque $=15 \mathrm{Nm}$
Diameter of ports $A, B, P, T: \varnothing=20 \mathrm{~mm}$;
Diameter of ports $X, Y: \varnothing=7 \mathrm{~mm}$;
Seals: 4 OR 130, 2 OR 2043

DPH*-261*

DPH*-263*/A DPH*-267*/A

DPH*-4*/FV

ISO 4401: 2005
Mounting surface: 4401-08-08-0-05

Fastening bolts:
6 socket head screws M12×60 class 12.9
Tightening torque $=125 \mathrm{Nm}$
Diameter of ports A, B, P, T: $\varnothing=24 \mathrm{~mm}$;
Diameter of ports $X, Y: \varnothing=7 \mathrm{~mm}$;
Seals: 4 OR 4112, 2 OR 3056

Mass (Kg)	
DPHII-46	17,6
DPHI-47	18,2
DPHE-46	17,7
DPHE-47	18,4
Option H, H9	

DPH*-463*
DPH*-467*

